
DOCUMENT RESUME

ED 068 068 HE 003 521

AUTHOR Etnyre, Vance; And Others
TITLE GENIRAS. Level-1 User's Manual.
INSTITUTION Illinois Univ., Urbana. Coll. of Engineering.
PUB DATE May 72
NOTE 90p.

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS Computer Programs; *Computers; *Educational

Administration; Guides; *Higher Education;
*Management Information Systems; Manuals; *Programing
Languages

ABSTRACT
GENIRAS (Generalized Information Storage, Retrieval,

and Application System) is the name given to a computer-aided
information system designed for the storage, retrieval, analysis,
manipulation, and display of records, files, and associated data. It
is intended to characterize the integration of the data storage and
retrieval functions of generalized file management systems with the
application functions advocated for management information systems.
Thj.s manual is concerned with informing the user of how to operate a
keYboard terminal; how to use the PLORTS (PL One Remote Terminal
Subset) system to create, update, combine, and display input files of
instructions; and how to construct correct statements in GENERAL, the
input language of GENIRAS. (Author/HS)

GENIRAS

LEVEL -1 USER'S MANUAL

Prepared by
Vance Etnyre

Charles Ludmer
Kit McMillion

U S DEPARTMENT OF HEALTH.
EDUCATION tc WELFARE
OFFICE OF EOUCA TION

i)OIa1UE ^iI II AS IIIIN RE P11(1
DM ID I xAcIt NE 111 \ If) I H()%1
THE 0117,11N (114 1117,,;,0,'Al!()N (MI6

TiNt, It POIN IE, (fl t,if 0, (01 OPIN
ION!, !.7:47f I)() Ni(11 N1 ISSANII
itE PtiPlf Nl el ,/{ i(I (); fDi)
1.:11,()N 1'14,1111% :11f P(/1

May 1972

FILMED FROM BEST AVAILABLE COPY

00

CD
Ob

CD

C=3
L.L.1

GENIRAS

LEVEL -1 USER'S MANUAL

Prepared by
Vance Etnyre

Charles Ludmer
Kit McMillion

May 1972

ACKNOWLEDGMENTS

The GENIRAS system originated in the College of Engineering

at the University of Illinois at Urbana-Champaign with the

purpose of aiding administrators in various forms of institu-

tional planning. Participating with the investigator, V. A.

Etnyre, in the original formulation of the system were A. F.

Graziano, Assistant Vice-Chancellor for Academic Affairs;

J. J. Desmond, Associate Director, Engineering Experiment

Station; and M. Davenport, currently Vice-President, Texas

Tech University.

Arrangements for the original funding of the project were

made with the help of H. E. Carter, Vice-Chancellor for Aca-

demic Affairs at the time; A. F. Graziano; and R. J. Martin,

Director, Engineering Experiment Station.

As the project progressed, design and programming were

coordinated with the help of J. H. Stanley, Research Programmer

and Director, Commerce Computing Center.

Among those contributing to the applications programs

were W. Montgomery, M. Walker, E. Domke, M. O'Connor, R. Palmer,

and G. Foat. Systems programs for the later versions of

GENIRAS were written by J. H. Stanley.

Funding was coordinated by A. F. Graziano, H. E. Carter,

D. C. Drucker, Dean of Engineering, R. J. Martin, J. J. Desmond,

and H. L. Wakeland, Associate Dean of Engineering.

TABLE OF CONTENTS

Page

I. INTRODUCTION
1

II. DESCRIPTION OF FILES
5

III. GENIRAS/PLORTS INSTRUCTIONS
7

IV. GENIRAL LANGUAGE STATEMENTS 10

Data Identifiers
13

Connectors
16

Verbs
20

APPENDICES

rI. INTRODUCTION

CI

GENIRAS is the name given to a computer-aided informa-

tion system designed for the storage, retrieval, analysis,

manipulation, and display of records, files, and associated

data. The acronym GENIRAS, pronounced like 'generous' is

derived from the words GENeralized Information Storage,

Retrieval, and Application System. It is intended to

characterize the integration of the data storage and re-

trieval functions of generalized file management systems

with the application functions advocated for'management

information systems.'

GENIRAS is implemented on the ILLINET computer net-

work at the University of Illinois, using the remote file

handling and job entry facility of the PLORTS system.

PLORTS, which stands for PL One Remote Terminal Subset,

enables the user to access the ILLINET computer system,

through a keyboard terminal like a teletypewriter. The

physical components of the PLORTS system include the ter-

minal and coupled communication lines, a communications

multiplexor computer (PDP-7), a filing, editing, and re-

mote job entry facility (currently implemented on an IBM

360/75), and a batch processing computer system (the IBM

360/75). Two types of terminals--the IBM 2741 terminal

and the Teletype Model 33 terminal--through which the

user communicates with the other parts of the system are

described in Appendix B of this document.

The following assumptions about the nature of data

5

-2-

and data handling lead to the definition and development

of the GENIRAS system.

1. Most data are recorded in meaningful groups or

structures rather than in random pieces. A data

group is a collection of data items which share one

or more common attributes. An attribute might de-

scribe an organizational boundary, a specific time per-

iod, or a specific functional relationship. For

instance, a particular data group might share the com-

mon attribute that they represent costs, so the name

COSTS might be used as a reference name within the

system. The group of costs, in turn, might be indexed

according to the years during which the costs oc-

curred and according to the departments which :ncurred

them. Each group of cost data sharing a common index

(year or department) would be a subgroup of the larger

group.

2. Most data processing requires that a particular

operation or procedure be performed with each member

of a data group. For example, a particular group of

costs might be summed, averaged, or compared. The

process of assuring that every member of a data group

is included in the procedure is called exhausting

the data group.

3. Data processing frequently requires the use of

corresponding elements from different data groups.

The corresponding elements are those elements that

-3-

share one or more specified attributes. For example,

the information contained in several different data

groups, but applying to a particular year, might be

desired. The process of finding the corresponding

elements is called matching.

4. Many individuals understand their data processing

needs well enough to describe them easily and pre-

cisely, in conversational English, to a friend or col-

league. However, these individuals are unable to use

the power of a computer to help solve their problems

because typical computer languages are so completely

different-from conversational English.

5. Every specific capability that may be desired in

a data processing system cannot be anticipated. New

processing mechanisms may become necessary, and those

already in existence may have to be applied to newly

created data groups.

GENIRAS systems allow the user to interact at various

levels with a computer-based information system. At the

lowest level of sophistication (Level 1), the standard

procedures supplied by GENIRAS can be applied directly to a

user's established collection of data. Existing procedures

are specified with predefined, "English-like" instructions

to satisfy simple data retrieval and processing needs. At

this level, matching of data items and exhausting of data

groups are handled automatically by the system. At a more

sophisticated level (Level 2), new sets of procedures may

7

be defined using the English-like language of the system,

the full power of a procedural language (P1/1, COBOL,

or FORTRAN), basic assembly language, or combinations of

these languages. Special purpose languages also may be de-

fined by a user for any particular application.

GENIRAS takes advantage of the structure of data

groups to relieve the user of the need to match correspond-

ing item.: or to exhaust data groups. These functions are

handled automatically. Procedures for copying, sorting, up-

dating, and transforming data also are supplied as a conve-

nience to the user. GENIRAS permits a great deal of ease,

power, and flexibility in defining and using collections of

data, in applying procedures to collections of data, and in

employing languages to define these procedures.

This manual will be concerned with the Level I use of

the system. At this level, the user must understand how to

operate a keyboard terminal, how to use the PLORTS system

to create, update, combine, and display input files of in-

structions, and how to construct correct statements in

GENIRAL, the input language of GENIRAS.

i

i

-5-

II. DESCRIPTION OF FILES

Using GENIRAS implies nothing more than manipulating

two different kinds of files. There are data files con-

sisting of collections of records stored on peripheral

memory devices of the computer, and there are PLORTS files

of commands and descriptive material. The distinction be-

tween these two kinds of files is of basic importance be-

cause they are created and manipulated in completely differ-

ent ways.

A data file consists of a series of records designed

for processing by a computer. Each record is composed of

fields containing individual pieces of information, and

these fields can be identified by data names. To retrieve

information using GENIRAS, the computer needs only the iden-

tifying name of a data field. Use of the system at Level l

assumes the existence of all necessary data files.

The other kind of file--the PLORTS file--may hold

data, job control information, descriptive material, and

instructions to the computer for the manipulation of data

files. When a job is to be executed, a PLORTS file con-

taining the job instructions is sent to the computer.

Each PLORTS file is given a name of eight or less characters,

but not including blanks, commas, or periods. PLORTS files

are opened from a user's terminal by typing the command

OPEN followed by a single space and the name of the file.

After a PLORTS file has been opened, its contents may be al-

tered or listed at the terminal. When a PLORTS file is

9

-6-

closed, the instructions it contains can be passed to the

computer for execution by giving the RUN command at the ter-

minal. The section of this manual dealing with the operation

of the terminals gives a more complete description of the

procedures for manipulating PLORTS files.

The following sections will deal with the creation, up-

dating, and display of PLORTS files. The use of the GENIRAL

language to create programs for storage in PLORTS files and

the instructions necessary to cause execution of these pro-

grams alsq will be discussed.

III. GENIRAS/PLORTS INSTRUCTIONS

The instructions sent to the computer system from a

terminal fall into three basic categories on the basis of

the portion of the system which they affect. The first

level of instructions is intended for the creation, main-

tenance, and editing of PLORTS files. Some of these in-

structions cause operations to be performed on entire PLORTS

files, and are used when the terminal is in the closed

condition. Other instructions are used to create or alter

the contents of a particular file, and are used when the

terminal is in the open condition. (If any PLORTS file is

open for examination or alteration, the terminal is said to

be open.) Also included in the first category are multi-

plexor functions which assist in the formatting and entry

of job information. These commands are described in the

section of this manual dealing with the use of the terminals.

If the terminal is closed, as it is immediately after

signing on, the commands available can cause the names of

stored files to be listed, can cause an entire PLORTS file

to be deleted, can open a specific file, or can cause the

program in a particular file to be run.

When a specific file is open (only one file can be

open at any time), its entire contents may be listed, indi-

vidual lines may be listed, and lines may be entered or de-

leted. As an example, if the command OPEN BASICS is typed

at the terminal, the PLORTS file called BASICS will be

opened. If no such file exists, a new file by that name

-8-

will be created. The LIST command can be used to display

the entire contents of the file. If the contents of BASICS

were printed out, each line of the text would constitute a

record stored in the file by its line number.

The records in a file are stored by line number in in-

creasing numerical order. Line numbering can be accomplished

manually or automatically through one of the built-in multi-

plexor functions. If a line with a particular number is en-

tered into an open file, it will be inserted automatically

in its proper numerical position. If a line with that num-

ber already exists, it will be replaced by the new line.

Commands for both the open and closed terminal conditions

are explained in detail in the section of this manual

dealing with the operation of the terminals.

The second level of instructions to GENIRAS are those

written in GENIRAL (GENeral Information Retrieval and

Application Language), the system input language. State--

ments in GENIRAL direct the computer system to display the

contents of various data files, or to manipulate stored

data for the derivation of new, useful information. The

parts of a GENIKAL statement are the verb, the data names,

modifiers of the data nomes to be used, and connectors.

Because GENIRAL statements are the means for data processing

with GENIRAS, their composition and their use are discussed

in much greater detail in the following section.

The final level of instructions, in Job Control Lan-

guage (JCL), gives information about the particular memory

devices where data is stored. Since JCL is involved

primarily with what might be called the administrative de-

tails of jobs, it is secondary to the purpose of GENIRAS.

Frequently employed JCL statements are available as pre-

written packages for insertion in PLORTS files. Conse-

quently, a detailed discussion of JCL has not been included

in this manual.

.1 3

IV. GENIRAL LANGUAGE STATEMENTS

Input statements for GENIRAS are written with the

simple English-like sentence structure that is basic to the

language, GENIRAL. They are designed to be straightforward

and easy to learn. Each statement contains a main clause,

composed of a verb and one or more data identifiers, and

ends with a period. Data names or identifiers--the nouns

of GENIRAL--are separated by words and symbols called con-

nectors and may be modified with qualifiers.

For example, the GENIRAL statement

ADD SALARIES AND WAGES TO EQUIPMENT IMPROVEMENT

GIVING TOTAL EXPENSES FOR DEPARTMENT (2255).

uses SALARIES_AND_WAGES,EQUIPMENT_IMPROVEMENT, and

TOTAL EXPENSES as data indentifiers. It is obvious from

the statement that the first two data identifiers refer to

existing data while the third identifier is the name to be

given to the result of the addition. The single verb ADD

begins the statement. The connector FOR near the end of

the statement indicates that all the existing data to be

located and all the new data to be filed must be indexed

with the department code number 2255.

The verb of an input sentence is chosen from a list of

verbs that have been defined for the particular GENIRAS in-

stallation. The verb indicates what the computer is to do

with the specified data groups. Each verb and an explana-

tion of its correct use is described in a later section.

Verbs for GENIRAL can be added to or dele A from the sys-

tem at any time. Thus, each institution using a GENIRAS

system can define its own verbs as necessary.

Data identifiers also may be defined by the individual

user, or by the institution maintaining the system. Data

identifiers are the names a user employs when he wants to

refer to the information stored in particular fields of

some data file.

In some statements the main clause may be followed by

a single options clause containing any specified options

for the verb in the statement, or containing modifiers ap-

plying to all the data identifiers in the statement. If an

options clause is included in a statement, it is separated

from the main clause by a semicolon. At the end of certain

types of statements, after the period, a data section also

may be appended to enter data into the system. A table

illustrating the syntax of GENIRAL is included as Appendix A

to this manual. The table illustrates, in a formal way, the

possible arrangements, including punctuation, of the 'parts

of speech' of GENIRAL.

The following examples show statements consisting only

of main clauses.

DEFINE DATA FROM NAMES:COSTS.

ADD SALARY COSTS, EQUIPMENT COSTS, RESEARCH COSTS,

AND MAINTENANCE COSTS GIVING TOTAL COSTS.

PERFORM COST ANALYSIS.

LIST DEPARTMENT, YEAR, AND TOTAL COSTS.

The first example identifies the file containing all

the data names mentioned in the other main clauses. The

?5

EXECUTE

The verb EXECUTE causes the execution of a specific

prewritten Level-2 procedure stored in GENIRAS. The options

applying to EXECUTE depend entirely on the options defined

for the procedure being called. The creation of Level-2

procedures and their options is discussed in the supplement

to this manual dealing with Level-2 use of the system.

The verb EXECUTE is employed through a GENIRAL state-

ment of the form:

EXECUTE USING ,... AND GIVING

The first blank in the statement contains the name of the

prewritten procedure. If the procedure has been defined to

use arbitrary data groups, the data names for a specific

application must be included in the EXECUTE statement with

the connector USING. If a new data group is created by the

procedure being called, the name for the new group must fol-

low the connector GIVING in the statement.

PRINT, another GENIRAL verb, can be used in place of

EXECUTE if the procedure being called is designed to create

a printed report. On the other hand, EXECUTE can be sub-

stituted for PRINT, wherever it appears.

The following example illustrates the use of the verb

EXECUTE:

EXECUTE ATTRITION ANALYSIS FOR CURRIC (2250) USING

NEW FRESHMEN.

This statement assumes the existence of a prewritten, Level-2

procedure called ATTRITION ANALYSIS. The analysis apparently

EXECUTE (page 2)

has been written to operate on whichever data group is

specified in the statement after USING. In this case, the

data group is NEW_FRESHMEN enrollment in curriculum 2250,

where curriculum and year have been defined as the index

attributes of enrollment data.

-12-

second example causes the addition of automatically matched

data items. The third example causes the performance of a

prewritten procedure called COST ANALYSIS (see verb DEFINE

for procedures). Finally, the fourth example gives a list-

ing, in three columns, of the department and the year to

which particular cost totals apply and of the cost totals,

themselves. The use, in this example, of the names

DEPARTMENT and YEAR assumes the prior identification of the

index attributes with these names.

The examples which follow illustrate the placement of

modifiers with connectors in the main clause and as option

assignments in the options clause.

ADD SALARY COSTS, EQUIPMENT COSTS, RESEARCH_COSTS,

AND MAINTENANCE_COSTS GIVING TOTAL_COSTS FOR

(2250,1970).

ADD SALARY COSTS, EQUIPMENT COSTS, RESEARCH COSTS,

AND MAINTENANCE_COSTS GIVING TOTAL COSTS;

FIRST INDEX=2250, SECOND INDEX=1970.

ADD SALARY COSTS (2250,1970), EQUIPMENT COSTS

(2250,1970), RESEARCH_COSTS (2250,1970), AND

MAINTENANCE COSTS (2250,1970) GIVING TOTAL_COSTS

(2250,1970).

All three of the examples are equivalent. The con-

nector FOR is used in the first example to apply the desired

index attributes for all the data items. In the last ex-

ample, the index attributes are applied individually to

each data item. If one of the index attributes is not going

to be specified, one way to indicate the missing attribute

is to place a single asterisk where the attribute would have

-13-

been within the parentheses of the first or the third ex-

ample.

In the options clause, the specification of options

that apply to the verb is accomplished in the same way as

the specification of options that are modifiers. The

options available with each of the verbs defined for

GENIRAS are described later in this manual with the verbs

to which they apply.

Only very few of the verbs defined for GENIRAS permit

the use of a data section. When a data section is per-

mitted, the nature of its contents is included with the

description of the verb to which it applies. The form for

the data section is as follows:

*BEGIN (optional name)
the statements of the data section
*END

Data Identifiers

Data names or identifiers can be any combination of

letters, special symbols, and numbers. If blanks or

special symbols are used within a data name, the entire

name must be enclosed by single quotation marks each time

it is referenced. Although PLORTS file names are limited

to eight or less characters, and are not to include blanks,

commas, or periods, this is not the case with data identi-

fiers. Data names may be of any length, as long as the

first twenty characters are unique to that name.

Some examples of acceptable names are:

OVERTIME WAGES
'OVERTIME WAGES'

'OVERTIME WAGES FOR NON-PERMANENT WORKERS'
OVRTWG
'0W*.@tZ1#1.1

The difference between the first example and the second

example is of particular importance. In the first example,

the words are connected by an underscore. In the second

example, the identifier must be enclosed with quotation

marks because the words are separated by a space. These

two forms of the same name are not equivalent. Once the

form of a data name has been chosen, that form must be

used wherever the name appears in subsequent programming.

However, two or more names may be assigned to the same

data item, allowing the use of full descriptive names when

clarity is important, and the use of shorter names for speed

and convenience. Data names may be added or changed at

any time.

Modifiers in GENIRAL can be used in several ways to

qualify the description of data items. Modifiers include

file names and subfile names (to distinguish between two

items of the same name coming from different files), index

attributes, and selection criteria. Index attributes are

modifiers used to specify a particular subset of the data

identified by a data name and a particular index value.

Selection criteria are more complex modifiers that can in-

clude mane specifications consisting of names, values, and

logical relationships.

If two data items have the same name, but come from

different files, the addition of the appropriate file name

-15-

is sufficient to uniquely identify each item. When a name

is used within several subfiles, both the file and subfile

names must be added to the data name. Examples of correct

specifications follow:

DATANAME:FILE1
DATANAME:FILE2
DATANAME:FILE1:SUBFILEI
DATANAME:FILE1:SUBFILE2

By providing index attributes and selection criteria,

GENIRAS allows users to reference either entire data groups

or subgroups of data items. An entire data group consists

of all items having the same name. A subgroup consists of

only those items in the specified group which have a certain

common attribute or identifying characteristic. For exam-

ple, if costs were indexed by the year of their occurrence,

then COSTS (1969) and COSTS (1970) would designate two sub-

groups within the group named COSTS.

No more than two index attributes may be defined for

each file, subfile, or data item. The number of definable

attributes may be increased in the future. The description

of data and the application of attributes is described more

completely under the description of the verb DEFINE.

Selection criteria are employed similarly in the dis-

crimination and selection of data items. They also describe

subgroups of the data associated with a data name, but they

can be defined much more flexibly. For instance, the data

referred to by the identifier COSTS (1970,DEPT#2,

CRITERION= EQUIPMENT COST) is limited, in order, by the two

e71,11
t;m1-1.

index attributes, 1970 and DEPT#2, and by the criterion

EQUIPMENT_COSTS for a very restricted subgroup of the group

of costs.

Connectors

The connectors used in GENIRAL serve two purposes.

They help to make the input statements more readable, and

they provide information about the use of data items during

the execution of an input command. Certain connectors spec-

ify that a particular data item mentioned in a statement is

to control a process such as matching. Other connectors

specify that a new data item will be created by the execution

of an input command.

To make the discussion of connectors more meaningful,

it is helpful to introduce the concept of the action con-

trol block (ACB). An ACB is formed for each input state-

ment in GENIRAL, and gives the GENIRAS system a uniform

method for interpreting the instructions contained in

each statement. The connectors in GENIRAL tell the system

how a statement is to be translated into an ACB. The

GENIRAS system then uses the contents of the ACB to control

whatever process is requested.

An empty ACB has the following form:

0

2

3
4

5
6

7
8

New

Verb =

Data
name

First
index

Second
index

Criterion File
name

Subfile
name

-17-

The number of data items (the number of horizontal rows) in

an ACB will become as large as necessary for any application.

A connector from one of the lists shown below causes

a data name and its modifiers to be placed in a particular

location in the ACB. From a statement, the first data

identifier, unpreceded by a connector, is placed in loca-

tion 1 of the ACB.

The connectors AND
,(comma)
TO
WITH
BY

The connectors FROM
USING
AGAINST
MATCHING
VERSUS

cause the next data identifier to
be placed in the next available
location in the ACB.

indicate that the next data item
describes a control item. The
next data name will be placed in
location 0 in the ACB and subse-
quently will be interpreted as
the control item by the system.

The connectors INTO indicate that a new file or data
ONTO item is to be created under the
GIVING next data name. The next name will
ON be placed in the last location in

the ACB and subsequently will be
assigned to the new data created
when the command is executed.

The connector FOR followed by one or more modifiers,
will affect all the data items
mentioned in a statement.

-18-

For example, if ITEM] AND ITEM2 are the names of data

items stored, respectively, in SUBFILE1 and SUBFILE2, and

if the command

ADD ITEM1:FILE1:SUBFILE; TO ITEM2:FILE1:SUBFILE2

GIVING ITEM3 FOR (2250,197n); CRITERION='PDQ'.

is given, the following ACB will be created.

Verb = ADD

Data
name

0

First
index

Second
index

Criterion

ITEM1 2250 1970 PDQ
2 ITEM2 2250 1970 PDQ
3

5

6

7

8

New ITEM3 2250 1970 PDQ

File Subfi le
name name

FILE1 SUBFILE1
FILE1 SUBFILE2

In response to this ACB, GENIRAS will perform the fol-

lowing activities. First, the existing data items will be

located. Only data items having the specified attributes

(2250,1970) and satisfying criterion PDQ will be used in

making calculations. Second, the data items named ITEM1 and

ITEM2 will be added term by term to create a new data item

called ITEM3. Because the index attributes and the criter-

ion affect every data item named in the statement, the new

data created under ITEM3 also will be indexed according to

those attributes and that criterion.

As a second example, the statement GRAPH SALARIES AND

EQUIPMENT EXPENSES FOR DEPT (2220) AGAINST YEAR. will

cause the following ACB to be created.

Verb = GRAPH

Data
name

First Second Crite- File
index index rion name

0 YEAR 2220
1 SALARIES 2220
2 EQUIPMENT_ EXPENSES 2220
3

4

5

6

7

8

New

Subfile
name

In response to the command in this example, a graph will

be created with the values of the control item YEAR, along

the horizontal axis, plotted against the corresponding

values of the SALARIES and EQUIPMENT_EXPENSES for each year.

The fact that YEAR is the control item is indicated in the

statement by the connector AGAINST. The inclusion in the

statement of DEPT, presumably defined as the name of the

first index attribute, is optional. DEPT has been included

here to increase the clarity of the statement since only

one index attribute has been used.

It is not necessary for a level 1 user to memorize

the structure of the action control block. It is only

necessary to know: that data identifiers following the

connectors FROM, USING, AGAINST, MATCHING, or VERSUS will

be interpreted as control names; that identifiers follow-

ing the connectors INTO, ONTO, GIVING, or ON will be

assigned to newly created items; and that qualifiers fol-

lowing the connector FOR will be applied to all the data

items mentioned in the input statement.

25

-20-

Verbs

The verbs presently available in GEN1RAL will be

described in terms of their use with an existing collection

of data files and subfiles. Use of GENIRAS at Level 1

presupposed the existence of such an organized set of files.

In many cases, the index attributes of numerical de-

partment or curriculum code and year have been defined for

the filed data. Other index attributes and criteria de-

fined for the data will be explained as they appear in the

examples.

The following example shows the use of the verbs ADD,

LIST, and DEFINE.

1 /*ID PS=3743,DEPT=ENGADM,NAME=GENIRAS
2 //* This job creates a data group called
3 //* DEPARTMENT_EXPENSES by adding together items from
4 //* the groups called SALARIES AND WAGES,
5 //* EQUIPMENT IMPROVEMENT, and OTHER EXPENSES. After
6 //* the addition is performed, the department expenses
7 //* are listed. The code (2250) is for the Department
8 //* of Metallurgy and M7ning Engineering.
9 // EXEC GENIRAS

10 DEFINE DATA FROM NAMES:EXPENSES.
11 ADD SALARIES_ AND WAGES, EQUIPMENT IMPROVEMENT,
12 AND OTHER EXPINSES FOR DEPT (21-50) GIVING
13 DEPARTMENT EXPENSES.
14 LIST DEPARTMENT EXPENSES, SALARIES AND WAGES,
15 EQUIPMENT IMPROVEMENT, AND OTHER_ EXPENSES FOR
16 DEPT (225T).
17 //ENGDATA DD DSNAME=USER.P1191.ENGDATA,DISP=OLD

If the statements shown above are placed in a PLORTS file

and the PLORTS file is run, the operations described in

the program will be performed by the computer.

The first line of the program is an identification (ID)

statement. * Although it and several other prewritten ID

statements which are suitable to GENIRAS are stored in a

PLORTS file called ID, instructions for preparing special

ID statements are given in Appendix C.

The verb DEFINE is employed in this short program

(line 9) to tell the computer that the data names used in

the rest of the program refer to items from the data file

called EXPENSES. Through the next statement in the

program, the verb ADD creates a new data group from the

existing data groups. However, the new data group is not

stored permanently in the computer memory; it is destroyed

when the job is completed unless special methods (see the

verb SAVE) are employed to preserve it.

As the last specified operation in the program, the

verb LIST provides a printout of the data groups mentioned

in the LIST command (lines 12 and 13). Since the LIST and

ADD commands in this example have been modified by the

index attribute (2250), only the data applying ro the

Department of Metallurgy and Mining Engineering will be

added and printed.

*No specifications are given indicating the antici-
pated number of printed output lines, the amount of time,
or the number of cards, if any, to be punched. If the
number of lines and the time are not specified, the com-
puter will assume its own default values and process
the job accordingly.

-22-

The remaining statements, except the comments beginning

with //*, are standard JCL packages that are placed in the

open file by using the PLORTS instruction to COPY (not

the GENIRAL verb). In order to set up the job in the ex-

ample, the user at a terminal would have to open a PLORTS

file, give it a name, and type the following commands pre-

ceded by line numbers:

COPY ID.GENIRAS
COPY SETUP.ENGDATA
COPY GENIRAS or // EXEC GENIRAS
the GENIRAL instructions (preceded by line numbers)
COPY DESCRIPT.ENGDATA
//* comments

The comment statements, beginning with//*, may be

inserted with appropriate line numbers at any point in the

program to become stored with the contents of the file.

Any line beginning with //* in the first three columns is

not interpreted by the computer as an instruction.

The remainder of this section will illustrate the use

of the other verbs defined for GENIRAS. Any JCL statements

appearing in these examples are taken from those already

stored in PLORTS files and available through the PLORTS COPY

command. Use of GENIRAS at Level 1 presupposes that no

knowledge of JCL is necessary. In the following pages, the

verbs defined for GENIRAS are discussed in alphabetical

order. Whenever possible, similarities in the usage of

different verbs will be mentioned for reference.

ADD

The verb ADD is used to add the corresponding elements

of several existing data groups to create a new data group.

The ADD procedure automatically handles the matching of

corresponding elements from the data groups to insure that

the new data group is properly calculated from the existing

data elements. If an element from any of the existing

groups is missing, the corresponding sum element in the new

data group will be omitted.

The verb ADD is employed through a GENIRAL statement

of the form:

ADD , AND GIVING

Each of the blanks is to be filled with an appropriate data

name. As indicated, any number of data names may be included

in the first part of the statement after ADD. However, only

one data name can follow GIVING. All the data names used,

except for the one after GIVING, must refer to existing data.

The new data, created by summing the existing data,

becomes stored under the data name entered in the statement

after the keyword connector GIVING. This new data is stored

only for the duration of the job, and does not become a part

of the permanent set of data files. In order to save new

data permanently, the methods discussed with the verb SAVE

must be employed.

Other verbs in GENIRAL that create new data files in a

manner similar to ADD are SUBTRACT, MULTIPLY, and DIVIDE.

In each case, the specified operation is performed on the

ADD (page 2)

individual data elements automatically matched from the

requested files. So that the matching will be done effici-

ently, the files names for these operations should be sorted

(using the verb SORT) into the same sequence. If index

attributes or criteria are specified, the files should be

indexed similarly.

The following example shows the use of the verb ADD.

ADD EQUIPMENT_ COSTS (2250), RESEARCH_ EXPENDITURES

(2250), AND EQUIPMENT COSTS (2250)

GIVING PROJECT COSTS 68 69 70; CRITERION=
'SPECIAL PROJECTS'.

Clearly, the new data group will contain the three-year

cost totals for special projects in the Department of

Metallurgy and Mining Engineering (code 2250) for the years

during which data were recorded for all three variables.

In this example, 'SPECIAL PROJECTS,' specified in the options

clause, must refer to a criterion defined earlier in the

job. No options are defined for ADD.

30

.1..ms...=k

ANALYZE

The verb ANALYZE is employed through a GENIRAL statement

of the form:

ANALYZE USING , loos , AND

The name of the data to be analyzed follows the verb. If

no option is specified, a multiple linear regression analy-

sis is performed on these data in terms of the data referred

to after USING. The data to be analyzed is treated as the

dependent variable, while the others are considered independent.

An alternative use of the verb ANALYZE is associated

with GENIRAL statements of the following form:

ANALYZE AGAINST ; MODEL=

In this application of the verb, the analysis is used for

curve fitting. Again, the data name following ANALYZE

refers to the dependent variable, while the data name fol-

lowing AGAINST is the independent variable (possibly, an

index attribute like YEAR). If other index attributes or

criteria apply, they may be included in the statement in

the standard manner.

Both usages of the verb ANALYZE permit the specifica-

tion of the model for the analysis. The variable MODEL,

specified in an options clause, may be set equal to LINEAR,

QUADRATIC, or EXPONENTIAL. If no options clause is included,

GENIRAS assumes MODEL=LINEAR by default. The results of

the analysis are printed unless PRINT_OPTION=NO is speci-

fied. The results are stored for the remainder of the job

if the keyword GIVING is included in the statement and is

followed by a data name.

31

r

AVERAGE

The verb AVERAGE enables the user to obtain the average

of any data group stored in the GEN I RAS system. The

AVERAGE procedure produces the sum of the elements in a data

group, counts the number of numeric and non-numeric data

elements, counts the number of zero-valued elements, calcu-

lates and prints the average of the numeric data, and calcu-

lates the average of the non-zero data.

The verb AVERAGE is employed through a GENIRAL state-

ment of the form:

AVERAGE ,... , AND

For every data group mentioned in the statement, a separate

average is calculated and printed unless PRINT_OPTION=NO is

placed in an options clause. If PRINT_OPTION=ALL is speci-

fied, the additional values for the sum, the number of non-

numeric elements, the number of zero-valued elements, and

the average of only the non-zero elements will be printed

for each data group named in the statement. The average of

the numeric elements in a data group (the only value auto-

matically printed if no options are specified), is saved for

the remainder of the job under a name of the form:

AVG data
ImME
name.

Other verbs that operate in a similar way are SUM and

COUNT. As with any GENIRAL statement, index attributes or

criteria may be placed in the statement to modify any or all

of the data names. The following example illustrates the

type of instruction used to cause the calculation of an

AVERAGE (page 2)

average.

AVERAGE GRAD SALARIES (2250,1970); PRINT OPTION=NO.

The average of the salaries of 1970 graduates from

department 2250 will be calculated. Because the option is

specified, no printout will be created at the computer

facility, but the data item AVG_GRAD_SALARIES (2250,1970)

will be saved for use later in the job.

33

r.

f.

COUNT

The verb COUNT enables the user to obtain a count of

the elements in any data group stored in the computer system.

The COUNT procedure totals the number of items in each

specified data group and creates a printout of the totals at

the computer facility.

The verb COUNT is employed through a GENIRAL state-

ment of the form:

COUNT , AND

If only one data name is given, the AND is not necessary.

Each count will be saved for the remainder of the job under

a name of the form: COUNT data name. If no printout of-
the counts is desired, PRINT_OPTION=NO should be declared.

Other verbs that operate in a very similar way are

AVERAGE and SUM. As with any GENIRAL statement, index

attributes or criteria may be placed in the statement to

modify any or all of the data names. The following example

illustrates the type of instruction used to produce a count.

COUNT BIBLIOG; CRITERION=FOREIGN, PRINT_OPTION=NO.

The number of foreign references in the bibliography of the

Documents Center will be calculated as a result of this

statement. Because the option is specified, no printout

will be created at the computer facility, but the variable

COUNT BIBLIOG will be available for further processing.

34

DEFINE CRITERION

The DEFINE procedure for criteria applies to previously

defined data files. A criterion is defined through a

GENIRAL statement of the form:

DEFINE CRITERION

*BEGIN (

*END

The blank after CRITERION is filled with the name of the

criterion being defined. The name of the criterion also can

be entered at the beginning of the data section in paren-

theses after *BEGIN,

The remainder of the data section contains the state-

ments specifying the criterion. Each of these statements

is of the form:

name relation constant connector

name relation constant connector

Each name refers to the name of a particular field. The

relation is the desired relation between the values entered

in the record fields and some reference constant. The

connector in the statement is a comma, AND, or OR.

The following example illustrates the definition of a

criterion:

DEFINE CRITERION (page 2)

DEFINE CRITERION MAJOR EXP 19611'0_1965.

*BEGIN (MAJOR_EXP196120_1965)

YEAR GE 1961 AND YEAR LE 1965

EXPENSES GE 1000

*END

EXPENSES is the name of the existing data file to which this

criterion is to be applied. The lower limit on the expenses

of interest is $1,000. Only expenses incurred during the

years 1961-1965 will be examined.

The following permissible relations are shown with all

their equivalent forms.

'equal to' can be expressed as: EQUAL TO
EQ

'not equal to' can be expressed as: NOT EQUAL
NE

'greater than' can be expressed as: GREATER THAN
GT

'less than' can be expressed as: LESS THAN
LT

'greater than or equal to' can be exptessed as: GE

'less than or equal to' can be expressed as: LE

In specifications of limits involving both AND and OR, the

AND relationships will be checked first, and then the OR

relationships will be checked. For example, the specification

YEAR GE 1955 AND YEAR LE 1960 OR

YEAR GE 1965 AND YEAR LE 1970

36

t
DEFINE CRITERION (page 3)

identifies data from the years 1955 to 1960 or from 1965

to 1970.

DEFINE NAMES (used for data identification)

One application of the verb DEFINE is to identify the

source of data items. As described in the section of this

manual dealing with data identifiers, a data name can be

identified with a particular file and subfile by using

dataname:filename:subfilename whenever the data name has to

be used. The DEFINE NAMES procedure can be used as a more

convenient means of associating data items with particular

files and subfiles. The procedure is employed through a

statement of the form:

DEFINE NAMES FROM filename:subfilename.

A subfile name is included in the statement only if it is

needed for locating the desired data items.

Once the DEFINE NAMES procedure has been specified to

the computer during the execution of a job, all the names of

data items mentioned in the job will be located automatically

by the appropriate file name and subfile name. More than

one file name and one subfile name can be declared using

the DEFINE NAMES procedure only if the data items to be

mentioned in the job are unique to the specified files and

subfi les.

The following example illustrates the use of this verb:

DEFINE NAMES FROM ADMIN FILES:EXPENSES AND RECORDS:
ENROLLMENT.

SUM 'SALARIES_AND_WAGES FOR (2250,1970); CRIT=ACADEMIC.
DIVIDE SUM SALARIES_AND_WAGES BY UNDERGRAD_ENROLLMENT

GIVING TEACHING COST PER STUDENT FOR (2250,1970).

DEFINE NAMES (used for data identification--page 2)

The data item SALARIES AND WAGES is obviously from the

EXPENSES subfile of the ADMIN FILES file. UNDERGRAD ENROLL-

MENT, on the other hand, is from the ENROLLMENT subfile of

the RECORDS file. In the statements following the DEFINE

NAMES procedure, and in most of the statements found else-

where in this manual, the file names and subfile names have

been omitted because they are assumed to be defined in this

manner.

Another application of the verb DEFINE is to describe

the structure of a particular data file. The structure of

such a file can be declared from a keyboard terminal by

using a statement of the following form:

DEFINE DATA FROM INPUT GIVING NAMES:

FORM ='

*BEGIN

FILE NAME&

*END

The word INPUT in the first line identifies the terminal as

the source of the definition statements.

It is obvious from the previous example that NAMES is

used as the master prefix for all the file names created by

a user. The name of the particular file to be defined is

included in the DEFINE statement after NAMES: and in the

blank after FILE NAME in the data section. The FORM

referred to in the DEFINE statement is the form used for the

DEFINE NAMES (used for data identification--page 3)

information in the data section.

Three different forms for the data section are accept-

able. If the definition information is given in the form of

a COBOL file description, FORM='COBOL' should be declared in

the options clause. If the information is in the form of

PL/1 declare statements, then FORM=1PL1' should be stated.

If the information is already in the fixed GENIRAL format,

FORM= 'FIXED' can be declared, although FORM='FIXED' is the

default value if the options clause is omitted. Finally, if

the information is in the GENIRAL free-form data description

language, FORM=1GENDDLI should be declared.

The FORM declaration in the options clause tells the

system which syntax file and translator are to be used to

convert the data section into a GENIRAL fixed-form file

description. The GENIRAL free-form data description

language (GENDDL) has the following structure:

FILE IS filename

SUBFILE IS subfilename

FIRST INDEX IS indexname (field starting_position, type,

length, decimal_position)

SECOND INDEX IS indexname (field starting_position, type,

length, decimal_position)

dataname IS (field starting_pos.tion, type, length,

decimal_position)

dataname IS (field starting_ position, type, length,

decimal_position)

(Anywhere in the above description, = can be substituted
for IS.)

40

DEFINE NAMES (used for data identification--page 4)

In the example, dataname is the name of the data being

defined. The filename is the name chosen for the file; sub-

filename is the name chosen for the subfile. The index

attributes for the data item also are named and defined in

this data section. Lastly, the fields in the records are

specified.

The field descriptions contain the following information:

the location of the first column in the field; the type of

field; the length of the field; and the number of decimal

positions from the right edge of the field.

Two types of field can be defined. Entering A, for

alphanumeric, in the field description means that the field

is to contain a word or words composed of alphanumeric

characters. Entering N, for numeric, means that the field

is to contain a number. The length of the field is declared

in the statement after the type of field is declared. Lastly,

the number of decimal places reserved to the right of the

decimal point is declared. (The default value is zero.)

The following example illustrates a file description:

DEFINE DATA FROM INPUT GIVING NAMES:EXPENSES;

*BEGIN

*END

FORM='GENDDL'.

FILE IS EXPENSES

FIRST INDEX IS DEPARTMENT (1 ,A,4)

SECOND INDEX IS YEAR (5,N,4)

SALARIES IS (9,n,10,2)

41

DEFINE NAMES (used for data identification--page 5)

The index attributes are assumed to be DEPARTMENT and YEAR

for this application. The DEPARTMENT field begins in

column 1, is alphabetic, and has no decimal places. The

YEAR field begins in column 5, is numeric, and has no

decimal places. The SALARIES themselves are in a numeric

field, which is 10 places long, beginning in column 9. The

SALARIES field has an assumed decimal point which allows two

decimal places in the number. The following variations are

all equivalent to the field description for SALARIES:

(9,N,10,2); (9,N,(10,2)); or (9,N (10,2)).

The GENIRAL free-form data description language permits

a great deal of flexibility in the use of punctuation and in

the order of the statements. The items can be defined in

any order in the data section, and the field description

can be adapted to a wide variety of forms.

DEFINE PROCEDURE

The verb DEFINE can be employed to outline Level-1

procedures that may be required for data processing.

(Level-2 procedures are defined using the COMPILE verb.)

A Level-1 procedure is defined through a GENIRAL statement

of the form:

DEFINE PROCEDURE () USING

AND

*BEGIN (

*END

The name of the procedure appears in the parenthesis after

PROCEDURE (interchangeable with PROC) and again, in the data

section, in the parentheses after *BEGIN. Dummy names may

be placed in the DEFINE statement after USING to show how

item arguments for the procedure will be handled.

The following example illustrates the definition of a

procedure:

DEFINE PROCEDURE ('PERCENTAGE LIST') USING A AND

B.

*BEGIN ('PERCENTAGE LIST')

ADD A TO B GIVING C.

DIVIDE C BY A GIVING RATIO.

MULTIPLY RATIO BY 100 GIVING PERCENT.

LIST A, B, C, AND PERCENT.

*END

The dummy variables of the procedure are A and B. The name

of the procedure is enclosed in single quotation marks

because of the space between the words. The data item

DEFINE PROCEDURE (page 2)

identified by C is the sum of the items represented by A

and B.

The following example illustrates the use of this

procedure after it has been defined:

PERFORM 'PERCENTAGE LIST' USING EXPENSES(1970) AND

EQUIPMENTCOST(1970).

The system will refer to the stored definition of the pro-

cedure and perform it with EXPENSES(1970) substituted for A

and EQUIPMENT_COST(1970) substituted for B. If EXPENSES

and EQUIPMENT_COST are transposed in the PERFORM statement,

EQUIPMENT COST(1970) will be substituted for A and

EXPENSES(1970) will be substituted for B. Consequently, the

resulting calculations will be different. The order of the

data names in the PERFORM statement must follow the order of

the dummy variables in the definition.

DIVIDE

The verb DIVIDE is used to divide the corresponding ele-

ments of two existing data groups to create a new data group.

The DIVIDE procedure automatically handles the matching of

corresponding elements from the data groups to insure that

the new data group is properly calculated from the existing

data elements. If an element from either of the existing

groups is missing, the corresponding division result will

be omitted in the new data group.

The verb DIVIDE is employed through a GENIRAL state-

ment of the form:

DIVIDE BY GIVING

The three blanks are to be filled with the appropriate data

names. The first two blanks must be filled with the names

of existing data groups. The name after GIVING will be the

name of the new data group created by matching and dividing

the items in the first two groups.

The new data created will be stored only until the end

of the job, and does not become a part of the permanent set

of data files. In order to save this data, the methods dis-

cussed with the verb SAVE must be employed.

Other verbs in GENIRAL that create new data files in

a manner similar to DIVIDE are ADD, SUBTRACT, and MULTIPLY.

In each case, the specified operation is performed on the

individual data elements automatically matched from the

requested files. Since matching occurs, the files named

for these operations should be sorted (using the verb SORT)

DIVIDE (page 2)

into the same sequence. If index attributes or criteria

are specified, the files should be indexed similarly.

The following example shows the use of the verb DIVIDE.

DIVIDE OFFICE SPACE BY TOTAL SPACE GIVING

OFFICE SPACE/SPACE' FOR (*,1970).

Using 1970 data, the ratio of office space to total space

will be calculated for every department (assuming depart-

ment was defined as the first Index of OFFICE SPACE and

TOTAL SPACE).

r.

,16

ENTER

The verb ENTER is used to enter a file of data into the

system (usually from a keyboard terminal). This verb is

employed through a GENIRAL statement of the form:

ENTER USING).

*BEGIN (the asterisks for *BEGIN and *END must be in
column 1)

*END

The blank after ENTER is filled with the name to be assigned

to the newly entered file. The blank after USING is filled

with the name of the file containing the syntax information

for interpreting the data. The blank in parentheses is for

the name of the routine that converts the format of the

incoming data (described by the syntax information), into

an alternate format. The data, in the form to be translated,

follows the statement in the data section.

Translators already exist for common forms of input

data. If the input data is in the form of COBOL file

descriptions, the syntax file COBOLFD should be used. If the

input data is in the form of PL/1 declare statements, the

syntax file PL1DCL should be used. If the input data is in

the GENIRAL free-form data description language, the syntax

file called GENDDL should be used. Lastly, data in the form

of transactions can be entered using the TRANLAN syntax.

Translator programs and syntax descriptions for other

applications should be written only by an experienced

ENTER (page 2)

Level-2 programmer who is familiar with GENIRAS.

The following example illustrates the use of the verb

ENTER:

ENTER TRANSACTIONS USING TRANLAN(TRANTAN).

BEGIN

ACC#7446, DEBIT,P03091, 'ACME CHEMICALS'
*END

The first transaction described above involves a purchase

from Acme Chemicals made against account number 7446. This

transaction involves a debit to cover purchase order number

3091. Although only one transaction is being entered in the

example, any number of transactions could be included in the

data section.

The DEFINE and ENTER procedures are interrelated in

GENIRAL in that either procedure may be used first when

creating a data file. The data can be entered into the

system using the ENTER procedure, and then the form for the

data fife can be defined using the DEFINE procedure or vice

versa. The DEFINE procedure is used to outline the new

file structure with subfiles, index attributes, and the

appropriate field formats for its records; the Enter pro-

cedure is used to enter and store data under a particular

file name.

GRAPH

The verb GRAPH has many options to permit the plotting

of point or bar graphs in a wide variety of formats. Up to

five dependent variables can be plotted against a single

independent variable.

The verb GRAPH is employed through a GENIRAL statement

of the form:

GRAPH , AND AGAINST

The blanks in the statement after the word GRAPH are filled

with the names of the data groups to be plotted against the

single control group (named after AGAINST). (The control

group is often a common index attribute of the dependent

variables). The matching of corresponding elements is ac-

complished automatically by the GRAPH procedure.

The following example illustrates the use of the verb

GRAPH:

GRAPH BS DEGREES, MS DEGREES, AND PHD DEGREES AGAINST

YEAR FOR DEPARTMENT (2250); FORM= 'VERTICAL BAR'.

This statement will create a graph with a set of three bars

plotted vertically over each value of YEAR. The bars in

each set will represent the three dependent variables in

the order that they are mentioned in the statement. The

GRAPH routine will automatically select a different charac-

ter for each dependent variable, and will list the charac-

ters with their corresponding variable names on the printout.

In most cases, a simple statement naming the indepen-

dent and dependent variables is all that is necessary to

'19

GRAPH (page 2)

create a graph from GENIRAS data. In other cases, certain

options may be helpful. The numerous GRAPH options have

been tabulated below with their default values.

VERTICAL LABEL =' ' indicates the label to be
printed for the vertical axis. Nothing is printed as
the label if this option is not specified.

HORIZONTAL LABEL =' ' indicates the name to be
printed for the horizontal axis. Nothing is printed as
the label if this option is not specified.

TITLE=' ' indicates the title to be printed on the
graph. Nothing is printed as the title if this option
is not specified.

FORM= 'VERTICAL BAR' or 'VERTICAL POINT' or 'HORIZONTAL
BAR' or 'HORIZONTAL POINT' indicates the direction and
display method of the graph. The direction (horizontal
or vertical) is the direction of the axis of the
dependent variables. The display method (POINT or BAR)
indicates whether a single point or a bar is plotted
above the axis of the independent variable. The
default values,if the option is not specified, are
VERTICAL and POINT.

The following options are for special applications, and

normally are not necessary when plotting a graph.

GRAPH_SIZE="--' indicates the width of the entire
graph. The maximum value for the width is 100 columns.
The default value of this option also is 100.

AUTOMATIC_ ADJUSTMENT =' ' indicates that the width
of the graph can be automatically adjusted by the system
if the space required to plot the desired points exceeds
the specified or default value of the width. The default
value of this option is YES.

NUMBER_OFINTERVALS="--' indicates the number of
intervals (for one dependent variable, the number of
points) included in the graph. The value given for the
NUMBER_OF_INTERVALS, times either the specified or the
default value of the INTERVAL SIZE, fixes the width of
the graph. The default value of this option is 20,
and the system will adjust the width of the graph
accordingly, despite the fact that less than 20
intervals may be needed.

0

GRAPH (page 3)

INTERVAL SIZE =' - - -' indicates the number of columns
between the plotted points of a particular variable.
For example, if a bar graph is plotted with bars

1

column wide, then the distance between successive
bars will be the INTERVAL SIZE. In general, the number
of spaces left between successive points of a particular
plotted variable will be the INTERVAL SIZE minus the
WIDTH. The default value of this option is 5.

INTERVAL_SPACING='---' indicates the number of spaces
to be left between successively plotted groups of
points. For example, if four data groups are plotted
on a bar graph against year, there will be four bars
associated with each value along the year axis. The
INTERVAL SPACING is the distance between the last bar
in one group and the first bar in the next group.
Specifying the INTERVAL_SPACING guarantees a certain
minimum amount of space between the groups for data
points for several dependent variables. The default
for the INTERVAL SPACING is 1.

POINT SPACING ' ' indicates the spacing, along the
axis of the independent variable, between the points
plotted for the values of the dependent variables
corresponding to a single value of the independent
variable. For example, if four dependent variables are
plotted against the values of the independent variable,
a POINT SPACING of 1 will put the points for the depen-
dent variables in successive columns. The default
value of this option is, which puts all the points in
one column. If the points to be graphed will be very
similar in value, it is a good idea to separate them
using this option because the printer cannot plot two
points in the same space.

WIDTH='---' indicates the width of the bars or points
to be plotted. The default value is 1.

STARTING POSITION =' - - -' indicates how far from the left
or bottom edge of the graph the first point is to be
plotted. The default value is 2.

STARTING_POINT=1---,---,... ---' indicates how far from
the left or bottom edge of the graph successive points
are to be plotted against the first value of the in-
dependent variable. The first number in the option
specification gives the distance of the first point
from the edge, the second number gives the distance of
the second point from the first point, and so on for
up to five dependent variables. The default values
for up to five dependent variables are 2,2,2,2 and 2.
If the graph has only one dependent variable, the
STARTING POINT and STARTING POSITION options are

GRAPH (page 4)

equivalent.

RANGE MAX = '---' indicates the maximum value to be
assigned along the axis of the dependent variables.
The default for this option is that the system finds
its own 'natural' maximum which just exceeds the max-
imum value of all the dependent variables being plotted.
Efficient scaling of the graph depends on the maximum
and minimum values of the dependent variables and not
on some preset limits. It is usually not a good idea
to specify these limits in advance. The system will
automatically scale the graph into equal, 'natural'
intervals that include the maximum value if this
option is omitted.

RANGE MIN =' - - -' indicates the minimum value to be
assigned along the axis of the dependent variables.
The default for this option is a 'natural' minimum
which is just less than the minimum value of the
dependent variables being plotted. If RANGE_MIN and
RANGE_MAX are specified, the values must give enough
range to plot all the points of the graph. If the
range is not sufficient, any points to be graphed
outside the range will be omitted.

LIST

The LIST procedure creates a list, in tabular form,

of the elements from data groups with matthing pairs of

index attributes. If no index attributes are specified

for the matching process, the index attributes of the first

data group will be used by default.

The verb LIST is employed through a GENIRAL statement of

the form:

LIST , AND

The data groups named in the statement are not changed in

any way, but are merely listed.

If the list is to be broken into groups on the basis

of a particular index attribute or criterion, it should be

mentioned in the options clause as a CONTROL. For example,

the statement

LIST SALARIES_AND_WAGES FOR DEPT (2250); CONTROL=YEAR.

will give the desired listing broken into yearly groups.

If no pethod of breakdown is specified, the data is printed

in a continuous list. If a breakdown is desired, the data

groups first should be sorted using the verb SORT into the

sequence of the CONTROL item.

53

MULTIPLY

The verb MULTIPLY is used to multiply the corresponding

elements of several existing data groups to create a new

data group. The MULTIPLY procedure automatically handles

the matching of corresponding elements from the data groups

to iniure that the new data group is properly calculated

from the existing data elements. If an element from any of

the existing groups is missing, the corresponding element in

the new data group will be omitted.

The verb MULTIPLY is employed through a GENIRAL state-

ment of the form:

MULTIPLY

GIVING
ir , AND

Each of the blanks is to be filled with an appropriate data

name. As indicated, any number of data names may be included

in the first part of the statement after MULTIPLY. How-

ever, only one data name can follow GIVING. All the data

names used, except for the one after GIVING, must refer to

existing data.

The new data, created by multiplying the existing data,

becomes stored under the data name entered in the statement

after the keyword connector GIVING. This new data is stored

only for the duration of the job, and does not become a

part of the permanent set of data files. In order to save

new data permanently, the methods discussed with the verb

SAVE must be employed.

Other verbs in GENIRAL that create new data files in a

manner similar to MULTIPLY are ADD, SUBTRACT, and DIVIDE.

54

MULTIPLY (page 2)

In each case, the specified operation is performed on the

individual data elements automatically matched form the re-

quested files. Since matching occurs, the files named for

these operations should be sorted (using the verb SORT) into

the same sequence. If index attributes or criteria are

specified, the files should be indexed identically.

The following example shows the use of the verb MULTIPLY.

MULTIPLY WORK HOURS BY AVG_WAGERATE GIVING

EST LABOR COSTS FOR DEPT (2250); CRIT=MAINTENANCE.

Using an average figure for the wage rate, a value of work

hours (possibly projected) is multiplied to give an estimate

of maintenance labor costs for department 2250. It is impor-

tant to note that the basic form for this statement differs

somewhat from the general form given earlier. The only

difference is that the connector BY is a more natural English

usage than AND in the situation where only two data groups

are multiplied.

PERFORM

The verb PERFORM is used to execute a specific prewritten

Level-1 procedure stored in GENIRAS. The options applying

to PERFORM depend entirely on the options defined for the

procedure being called. The definition of Level-1 procedures

is discussed under the verb DEFINE.

The verb PERFORM is employed through a GENIRAL state-

ment of the form:

PERFORM USING ,... AND GIVING

The first blank in the statement contains the name of the

prewritten procedure. If the procedure has been defined to

use arbitrary data groups, the data names for a specific

application must be included in the PERFORM statement with

the connector USING. If a new data group is created by the

procedure being called, the name for the new group must follow

the connector GIVING in the statement.

The following example illustrates the use of the verb

PERFORM:

PERFORM TREND ANALYSIS USING ENROLLMENT FOR CURRIC (2250).

This statement assumes the existence of a prewritten, Level-1

procedure called TREND ANALYSIS. The analysis apparently

has been written to operate on whichever data group is speci-

fied in the statement after USING. In this case, the data

group is ENROLLMENT, where curriculum and year have been

defined as the index attributes of enrollment data.

56

PROJECT (page 2)

essary to make a projection will be available during the

remainder of the job.

The three possible models for analysis and projection

are LINEAR, QUADRATIC, and EXPONENTIAL. As the result of

a LINEAR analysis, the value of the SLOPE will be stored

under SLOPE data name, where data name is the name of the

item that was analyzed. If a QUADRATIC model is used in an

analysis, the coefficient of the quadratic term will be

stored under QUAD_data_name; the coefficient of the linear

term will be stored under SLOPE data name. Finally, if an

EXPONENTIAL analysis is performed, the EXPONENT will be

stored under EXP data name. These same parameters are re-_

quired with the appropriate model when a projection is being

made. If an analysis has been performed using the same type

of model as the model to be used for projection, these para-

meters may be identified in the options clause by name.

Otherwise, numerical values must be given.

The following examples show the PROJECT verb being used

with and without a preceding analysis:

ANALYZE ENROLLMENT AGAINST YEAR FOR DEPT(2250);

Or

MODEL=EXPONENTIAL.

PROJECT ENROLLMENT(2250) FROM YEAR(2250,1970)

TO (2250,1985); MODEL=EXPONENTIAL, EXPONENT=EXP_

ENROLLMENT(2250), STARTING_VALUE=84.

PROJECT ENROLLMENT(2250) FROM YEAR(2250,1970)

TO (2250,1985); MODEL=EXPONENTIAL, EXPONENT='1.17',

STARTING VALUE=84.

PROJECT (page 3)

The first example shows the use of the PROJECT procedure

after an analysis using the same type of model. The inde-

pendent variable for both the analysis and the projection

is YEAR, and the starting point is the single value of the

enrollment in department 2250 during 1970. The stopping

point is the year 1985. The data name may or may not be

repeated when the stopping point is identified. In this

example, it is not. Because the analysis precedes the pro-

jection, the exponent is available by name. The second ex-

ample performs a projection between the same endpoints with-

out depending on a preceding analysis. The exponent has

been calculated by some other method and has been given as

a numerical value in the options clause.

RESTORE

Use of the verb RESTORE follows the application of the

verb SAVE. If data items have been created during the exe-

cution of a previous job and have been saved using a state-

ment of the form:

SAVE
, ,... AND .,

they may be recalled for use in subsequent jobs by includ-

ing a statement of the form:

RESTORE ,... AND .

The blanks are filled with the names of the data items that

are being retrieved from storage.

If the data items have been stored in a file created

by the user, they are retrieved from that particular file

by a GENIRAL statement of the form:

RESTORE ,... AND FROM

The name of the file created by the user follows FROM in

the statement. Referral of the system to particular file

requires the inclusion of appropriate JCL device description

statements with the job instructions.

C.

SAVE

The SAVE procedure is the standard method used to store

newly created data items. New data items result from the

arithmetic verbs like ADD, SUM, and MULTIPLY and from certain

other item-oriented verbs in GENIRAL. The SAVE procedure

is applicable only to new data items, and not to new data

files (like those created by the GENIRAL verbs SORT and

MERGE). The verb SAVE is employed through a GENIRAL state-

ment of the form:

SAVE ,... AND

If data items have been saved from a previous job, and

if they must be located and made available in a later job,

the verb RESTORE must be employed in a statement of the

form:

RESTORE ,... AND

The blanks are filled with the names of the required data

items.

If the user wishes to place a data item in some file

other than the one automatically reserved for item storage,

the SAVE statement should be modified to read:

SAVE ,... AND GIVING

The last blank is filled with the name of the file in which

the data items will be stored. The file named after GIVING

. (interchangeable with ONTO) must be a partitioned data set

described by appropriate device description statements

(DD statements in JCL).

SAVE (Page 2)

The following example illustrates the use of the verb

SAVE:

SAVE SUM EXPENSES ONTO MYFILE.

MYFILE has been described elsewhere in the job instructions

as a partitioned data set that is to be kept after the

termination of the job. The item being saved is a group of

data items formed by adding items from the EXPENSES file.

This group can be restored for use in a later job with the

following statement:

RESTORE SUM EXPENSES FROM MYFILE.

63

SELECT

SELECT is a Level-2 procedure which provides an

efficient means for selecting a subset of records from a

data file. The SELECT procedure performs the same function

as the verb COPY used with a criterion, but SELECT is more

efficient. Unlike COPY, the procedure for selecting data

items must be defined for each application of the verb

SELECT and is not limited to previously defined criteria.

The criteria used in the SELECT procedure are described

in a Level-2 program using the COMPILE procedure. Speci-

fication of the SELECT feature takes the following form:

SELECT:PROCEDURt:

%INCLUDE DESCRIPT(filename);

%INCLUDE PLIMACRO(SELECT1);

IF

%INCLUDE PLIMACRO(SELECT2);

The filename in the specification is the name of the file

to which the SELECT procedure is to be applied. The blank

after IF in the specification is filled with an appropriate

form of a PL/1 IF statement (without a THEN or an ELSE

clause) .

If the SELECT procedure is entered at the terminal

it can be compiled by entering the lines COMPILE SELECT.

and *BEGIN (with the asterisk In column 1) before the first

line of the specification and by entering *END after the

last line.

64

SELECT (page 2)

The following example illustrates the compilation

of a SELECT procedure entered at a terminal:

COMPILE

*BEGIN

SELECT:PROCEDURE;

%INCLUDE PL1MACRO(SELECT1);

%INCLUDE DESCRIPT(CUMFILE);

IF CLASS=01 AND ENDING HOURS>40

%INCLUDE PL1MACRO(SELECT2);

*END

This SELECT procedure is to be used on a file called

CUMFILE to select records on the basis of the CLASS code

and the number of credit hours at the end of the term. The

desired records from CUMFILE are selected and placed in a

new file called WORKFILE using the following statement:

SELECT WORKFILE FROM CUMFILE.

The SELECT procedure must be recompiled each time it is

needed, and it can be changed at will. (WORKFILE is a

special temporary file, stored only until the end of the job,

and it requires no accompnying JCL device description

statements. Any other name for a temporary or permanent

file requires such a device description.)

SORT

The verb SORT can be used to reorder the records in a

data file before the records are processed. Any of the

procedures requiring matching of the corresponding elements

from different data files should be preceded by a SORT

statement putting the records into the proper order in their

respective files.

The verb SORT is employed through a GENIRAL statement

of the form:

SORT ONTO ; CONTROL =' ',SIZE =' 1

The first blank in the statement is filled with the name of

the file to be sorted. The connector ONTO (interchangeable

with the connector GIVING) precedes the name for the new,

sorted file. The following example illustrates the use

of the verb SORT:

SORT CUMFILE ONTO WORKFILE; CONTROL=SOC SEC NO,

SIZE=E3000.

CUMFILE is to be sorted onto a temporary file called

WORKFILE. Unlike other temporary or permanent files,

WORKFILE requires no device description (DD) statement,

written in JCL and included with the job instructions. The

necessary DD statements for WORKFILE are entered automat-

ically when the Job is executed. The use of any other file

name after the word ONTO requires an appropriate DD

statement.

The order of the records in the sorted file (WORKFILE

in the example) depends on the CONTROL option which must be

SORT (page 2)

specified in the options clause. The form of the CONTROL

option is: 'ITEM_NAME,ITEMNAME,ITEMNAME,...ITEM_NAME'.

In the example given above, the records in CUMFILE will

sorted by social security number. The word SOC_SEC_NO

can be used as the CONTROL item in this case because it has

been defined as the name of the field for the social

security number in CUMFILE records. If no name had been

assigned to the field for the social security number, a

pair of numbers, separated by a comma and indicating the

starting column and column length of the field, could be

indicated as the CONTROL NUMBERS. If a multiple CONTROL

like 'YEAR,NAME' had been used, the records would have been

sorted in ascending order by year and then alphabetically

by name within each year. The ascending order of the years,

from the earliest to the most recent, and the ascending

alphabetical order, from A to Z, can be reversed by

placing (D), for descending, after the appropriate CONTROL

items.

Because peripheral storage space will be needed to hold

the records while they are being sorted, the total SIZE, in

terms of the number of records, must be specified. For

example, the size in the example is written as 1E3000"

because the estimated total number of records is slightly

less than 3,000. (The estimate of the SIZE should never

be too low.)

An option which has not been specified in the example

be

is RECORD LENGTH. If the length of the records in the

67

SORT (Page 3)

file is 80 columns, this option is not mandatory because

its default value is 80. For longer or shorter records,

..
however, the RECORDIANGTH must be specified in the options

clause.

IcS

SUBTRACT

The verb SUBTRACT is used to subtract the correspond-

ing elements of two existing data groups to create a new data

group. The SUBTRACT procedure automatically handles the

matching of corresponding elements from the data groups to

insure that the new data group is properly calculated from

the existing data elements. If an element from either of the

existing groups is missing, the corresponding subtraction

result will be omitted in the new data group.

The verb SUBTRACT is employed through a GENIRAL state-

ment of the form:

SUBTRACT FROM GIVING

The three blanks are to be filled with the appropriate data

names. The first two blanks must be filled with the names of

existing data groups. The name after GIVING will be the name

of the new data group created by matching and subtracting

the items in the first two groups.

The new data created will be stored only until the end

of the job, and does not become a part of the permanent set

of data files. In order to save this data permanently, the

methods discussed with the verb SAVE must be employed.

Other verbs in GENIRAL that create new data files in a

manner similar to SUBTRACT are ADD, MULTIPLY, and DIVIDE.

In each case, the specified operation is performed on the

individual data elements automatically matched from the re-

quested files. Since matching occurs, the files named for

these operations should be sorted (using the verb SORT) into

GS

SUBTRACT (page 2)

the same sequence. If index attributes or criteria are

specified, the files should be indexed similarly.

The following example shows the use of the verb SUBTRACT.

SUBTRACT ELECTRICITY COSTS FROM MAINTENANCE COSTS GIVING

ADJUSTED COSTS FOR (0,1970).

As a result of this instruction, the adjusted maintenance

costs for the year 1970 will be calculated for all depart-

ments. In this example, it is important to note the posi-

tional nature of the index attribute. Since YEAR is assumed

to be the second attribute, the asterisk must be included

in the parentheses. If YEAR were the first attribute, it

could be written as either (1970,*) or (1970).

70

SUM

The verb SUM enables the user to obtain the sum of

the elements in any data group stored in the GENIRAS sys-

tem. The SUM procedure adds together all the items in each

specified group and creates a printout of the totals at the

computer facility.

The verb SUM is employed through a GENIRAL statement

of the form:

SUM , , AND .

If only one data name is given, the AND is not necessary.

Each sum will be saved for the remainder of the job under a

name of the form: SUM_data name. If no printout of the_

sums is desired, PRINTOPTION=NO should be declared.

Other verbs that operate in a similar way are AVERAGE

and COUNT. As with any GENIRAL statement, index attributes

or criteria may be placed in the statement to modify any or

all of the data names. The following example illustrates

the type of instruction used to produce a sum.

SUM MAINTENANCE COSTS FOR 0,1970); PRINT_OPTION=NO.

The total amount spent during 1970 on maintenance by all

departments will be calculated. Because the option is

specified, no printout will be created at the computer

facility.

UPDATE

The UPDATE procedure is extremely important for

keeping files of stored data current and accurate. The

UPDATE procedure is called with a GENIRAL statement of the

form:

UPDATE (, -) ONTO USING).

The file to be updated is named after the verb UPDATE. In

the parentheses following the file name are two numbers

indicating, in order, the beginning and the length of the

field to be used for matching corresponding records. The

name of the new file created by the UPDATE procedure is

placed in the statement after the word ONTO. The name of

the file containing the information used for updating is

listed after USING. Again, the fields used for matching

are described by the numbers in parentheses.

The following example illustrates the use of the

verb UPDATE:

UPDATE CUMFILE(1,20) ONTO NEWCUMFILE USING NEWFILE

(1,20).

The records in CUMFILE are to be updated in the example.

The records in CUMFILE are to be matched against those in

NEWFILE on the basis of the information contained in the

specified geld. In this example, the field starts in

column 1 and is 20 columns long; it might contain the

name of the person to whom the record applies.

As the UPDATE procedure matches records on the basis

of the specified field informatin, it has various operations

1."1
2.,

(

(

UPDATE (page 2)

which it can perform. If there is no element in the old

file corresponding to a particular record in the input file,

(the record in the input file is new) and if OPTIONS=

'INSERT' has been specified in an options clause, the new

record will be inserted into the updated file. If a

record in the old file and its corresponding record in the

updating file have been matched on the basis of the

specified field, and if the option REPLACE has been

specified, the old record will be replaced by the new

record in the updated file. Declaring no options in the

update statement causes both the INSERT and REPLACE options

to be declared automatically.

If OPTIONS='DELETE' is placed in the options clause,

the field information will be compared as before, but if

the matched records are identical, the record in the old

file will be deleted. The INSERT, REPLACE, and DELETE

options can be declared individually, as described, or in

pairs of the form: OPTIONS='INSERT AND DELETE'. However,

REPLACE and DELETE cannot be specified at the same time.

It is important to remember that the format of the

records in the updating file and the format of the records

in the old file must be identical because entire records,

not just field entries, are replaced, inserted, or deleted

during updating. For example, if the social security

number has been defined as a field of each record (in

columns 1-9 of CUMFILE), the social security number would

be matched in an UPDATE statement of the form:

UPDATE (page 3)

UPDATE CUMFILE(1,9) ONTO NEWCUMFILE USING NEWFILE (1,9).

74

APPEND I CES

75

APPENDIX A -- GENIRAL SYNTAX

The following table illustrates the complete struc-

tural organization of GENIRAL. From the definition of a

program as a series of statements, to the specification of

the letters for making words, the formation of GENIRAL

statements is described in this self-contained syntax.

Each 'part of speech' of the language is defined in terms

its more basic building blocks. If alternate forms for

the composition of a part of speech exist, they are listed.

If the formation of a part of speech requires the itera-

tive use of its building blocks, this condition is indi-

cated by repeating the original part of speech in the def-

inition of its composition.

Each part of speech of GENIRAL is enclosed in brackets

when it is mentioned in the table. Although the brackets

do not appear in actual GENIRAL statements, all other

punctuation indicated in the table is required In addition

to the brackets, the connective elements, 'is defined as'

and 'or.,' are not part of GENIRAL, but are part of the

organizational structure of the table.

A-2

Syntax Table for GENIRAL

[PROGRAM] is defined as [SERIES OF STATEMENTS]

[SERIES OF STATEMENTS] is defined as [STATEMENT] or
(STATEMENTHSERIES OF STATEMENTS]

[STATEMENT] is defined as [MAIN CLAUSE]. or
[MAIN CLAUSE];(OPTIONS CLAUSE]. or
[MAIN CLAUSE].[DATA SECTION] or
[MAIN CLAUSE];(OPTIONS CLAUSE].[DATA SECTION]

[MAIN CLAUSE] is defined as (VERBMIDENTIFIER] or
(VERBMIDENTIFIERMOTHER TERMS]

[OTHER TERMS] is defined as (CONNECTORUIDENTIFIER] or
[CONNECTOR][IDENTIFIERMOTHER TERMS]

[VERB] is defined as [WORD]

[IDENTIFIER] is defined as [DATA NAME] or
[DATA NAME][QUALIFIERS] or
[NUMBER]

[DATA NAME] is defined as [WORD]

[QUALIFIERS] is defined as [FILE QUALIFIERS] or
[SUBSET QUALIFIERS] or
[FILE QUALIFIERS] SUBSET QUALIFIERS] or
[SUBSET QUALIFIERS](FILE QUALIFIERS]

[FILE QUALIFIERS] is defined as :[FILE NAME] or
:[FILE NAME]:[SUBFILE QUALIFIERS]

[SUBFILE QUALIFIERS] is defined as :(SUBFILE NAME] or
:[SUBFILE NAME]:[SUBFILE QUALIFIERS]

[FILE NAME] is defined as [WORD]

[SUBFILE NAME] is defined as [WORD]

[SUBSET QUALIFIERS] is defined as ([INDICES]) or
((CRITERION TERM]) or
((INDICESMCRITERION TERM])

[INDICES] is defined as [INDEX] or
(INDEX],(INDICES]

[INDEX] is defined as [WORD]

[CRITERION TERM] is defined as [CRITERION KEYWORD]=
[CRITERION NAME]

"77

A-3

[CRITERION KEYWORD] is defined as CRITERION or
GRIT

[CRITERION NAME] is defined as [WORD]

[CONNECTOR] is defined as [PASSIVE CONNECTOR] or
[KEYWORD CONNECTOR]

[PASSIVE CONNECTOR] is defined as AND or
, or
, AND or
TO or
BY or
WITH

[KEYWORD CONNECTOR] is defined as OR or
FROM or
USING or
AGAINST or
MATCHING or
INTO or
ONTO or
ON or
GIVING or
FOR

[OPTIONS CLAUSE] is defined as [OPTION SPECIFICATIONS]

[OPTION SPECIFICATIONS] is definLd as [OPTION TERM] or
[OPTION TERM][OPTION SPECIFICATIONS] or
[OPTION TERM],[OPTION SPECIFICATIONS]

[OPTION TERM] is defined as [OPTION NAME]=[01""ION VALUE]

[OPTION NAME] is defined as [WORD]

[OPTION VALUE] is defined as [WORD]

[DATA SECTION] is defined as *BEGIN [DATA] *END or
*BEGIN ([SECTION NAME]) [DATA] *END

[SECTION NAME] is defined as [WORD]

[DATA] is defined as [DATA TERM] or
[DATA TERM](DATA]

[DATA TERM] is defined as [WORD] or
[NUMBER] or
[SYMBOL]

[WORD] is defined as '[SYMBOL STRING]' or
[NON-SPECIAL SYMBOL STRING]

[NUMBER] is defined as [DIGIT STRING] or
[DIGIT STRING]. or
.[DIGIT STRING] or
[DIGIT STR!NG].[DIGIT STRING]

[SYMBOL STRING] is defined as [SYMBOL] or
[SYMBOL][SYMBOL STRING]

[NON-SPECIAL SYMBOL STRING] is defined as [NON-SPECIAL SYMBOL]
or [NON-SPECIAL SYMBOL][NON-SPECIAL SYMBOL STRING]

[DIGIT STRING] is defined as [DIGIT] or
[DIGIT][DIGIT STRING]

[SYMBOL] is defined as [SPECIAL SYMBOL] or
[NON-SPECIAL SYMBOL]

[SPECIAL SYMBOL] is defined as . or , or ' or(or) or * or
; or : or or # or - or
/ or = or > or < or & or I or

[NON-SPECIAL SYMBOL] is defined as [LETTER] or
[DIGIT] or
[OTHER SYMBOL]

[LETTER] is defined as A or B or C or D or E or F or G or
H or I or J or K or L or M or N or
0 or P or Q or R or S or T or U or
V or W or X or Y or Z

[DIGIT] is defined as 0 or 1 or 2 or 3 or 4 or 5 or 6 or
7 or 8 or 9

[OTHER SYMBOL] is defined as # or $ or % or ? or or @

B-1

APPENDIX B PLORTS TERMINALS

Communication with GENIRAS can be accomplished with

statements typewritten at the user's terminal, with paper

tapes fed into Teletype terminals, and with decks of punched

cards brought to the computer system location. Since the

primary means of communication with the system will be

typewritten statements, a discussion of the use of punched

cards and paper tapes has been deferred to the supplement

to this manual dealing with Level 2 use of the system.

In addition to acquiring access to a terminal, a

prospective user of GENIRAS must obtain both a valid problem

specification number for the IBM System 360 and permission

from the Service Group to use the PLORTS system. Once

these details have been accomplished, the user's identifi-

cation number will be recorded in the system for reference

during signing on, as described below. The identification

code may contain non-printing characters to give added

security to stored records.

The following sections describe the use of the ter-

minals for creating and changing PLORTS files of programs

or data, for running these files, and for obtaining the

results as output. As described earlier, there are several

different categories of commands available to a user com-

municating with the system through a terminal. There are

commands used in the file editing system for constructing

and changing files, commands for formatting input state-

ments, and commands in GENIRAL.

80

B-2

Logging In

The procedure referred to as logging in causes the ter-

minal to be actively connected to the rest of the PLORTS

system. Information stored in files in the system is not

available to a user until he has properly logged in.

The procedure for logging in varies slightly depending

on the type of terminal. These differences in procedure

between Teletype Model 33 and IBM 2741 terminals have been

noted wherever they arise.

1. Turn the terminal on. If the terminal has a
direct connection, skip to step 4.

2. If the terminal has a separate data set (telephone
coupler), press the TALK button, pick up the telephone,
and dial the computer. Dial 333-4000 from a Teletype
terminal. Dial 333-4001 from an IBM 2741.

3. The computer will respond with an answering tone.
For the Teletype terminal, press the ORIG button on the
data set, and then hang up. (Press the DATA button on
an IBM 2741 terminal.)

4. Press the RETURN or RET key. If nothing happens,
the system is completely unavailable or the terminal
is not properly connected.

5. If the output is #XX TIME SHARING ON followed by
the date and time, the PLORTS system is available.

6. If the output is #XX TIME SHARING OFF, the PLORTS
system is temporarily unavailable. Try again later.
(IBM terminals will type this as a string of meaning-
less characters, if PLORTS is unavailable.)

7. After #XX TIME SHARING ON and the date and time,
the computer will type the message ENTER PS#,USER NAME.
Respond by typing your identifying problem specifica-
tion number and your name. The name and number should
be separated by a comma, and should contain no blanks.
(A user of the IBM 2741 might wish to precede this
reply with the instruction #UC so that lower case let-
ters will be accepted by the system.)

8. If the computer types BAD PS# OR NAME or PS#
INVALID OR INACTIVE, it means that the PS# or name as
entered, was not acceptable. Re-enter them both as

81

B-3

described in the previous step.

9. When the computer has accepted your name and PS#
it will respond by typing out the number of PLORTS
storage blocks that have been allocated and used under
your PS#. After completing the above, the computer
is ready to receive its first instruction.

10. When you have finished using the PLORTS system,
you must indicate that you have finished by typing
LOGOUT. The computer will respond by 'hanging up'
the terminal.

NOTE: If you do not log out properly, your files
will be available to the next person who signs on.
That person will be able to open and use your files,
and will be able to accrue charges for the use of com-
puter time under your PS#. If the computer is not be-
having properly when you are attempting to log in, it
may mean that the previous user has forgotten to log
out. Type LOGOUT, press the RETURN key, and try to
log in again.

11. A response from the computer of //WAIT while you
are trying to log in indicates that the PLORTS system
is momentarily unavailable. (The #WAIT message is not
typed by IBM 2741 terminals.)

Special Keys and Symbols

Both the Teletype Model 33 and the IBM 2741 terminals

have special keys for communicating with the computer.

Some of these special keys are used singly, while others

are used in pairs to send commands to the computer. The

use of these keys to perform similar functions differs

greatly between the Teletype terminals and the IBM terminals.

Because of this difference, the two types of terminals are

separated in the following discussion.

The Teletype Model 33 or Model 35

The keyboard is a standard four-row teletypewriter

keyboard that differs from a regular typewriter in the fol-

lowing respects.

L'sC.114.0

B-4

1. Only upper case characters are available. No
use of the SHIFT key is necessary. If the SHIFT key
is pressed, one of the special characters will be ob-
tained. These characters are marked as upper-case in
the usual way.

2. The following characters differ from their markings
on the Teletype keyboard:

SHIFT-K shown as a left bracket implies a t (cent);
SHIFT-L shown as a \ implies a ---I (not);
SHIFT-M shown as a right bracketimplies (underscore);
SHIFT-N shown as t or ^ implies I (or).

3. If the CTRL (control) key is pressed while other
keys are being pressed, other special characters are
obtained. Any keys and key combinations on the Tele-
type, except for those outlined below, should not be
used without special authoriztion.

4. The standard control characters are obtained as
follows:

RETURN (a non-printing character) causes the carriage
to return to the beginning of the line. RETURN is the
conventional method used to signal PLORTS that the line
just typed is to be interpreted by the computer. Until
RETURN is typed, the information typed on a line is
not examined.

CONTROL-W or CTRL-W also causes the carriage to return
to the beginning of the line. However, the information
typed on the line is ignored by the computer.

SHIFT-0 backspaces the internal character reader by one
space. It will not move the carriage back, however.
Instead, an underscore or an arrow will print each
time the key combination is struck. Since a new char-
acter typed for the same location in a line (as an in-
correct character) will replace the incorrect character,
the backspace is useful for correcting errors. For
example, if the word TYPO is incorrectly typed as TYOP,
SHIFT-0 should be typed twice followed by the letters
P0. The terminal will type either TYOP PO or
TY01344-PO. The word will be interpreted as TYPO.

5. Other control characters on the Teletype terminals
are used to activate the multiplexor functions ex-
plained later in this section. They are listed here
for reference. The key combination CTRL-Z cues the
#NUM function. CTRL-1 cues the #TAB and #STAB func-
tions. CTRL-A cues the I/COPY function, and RUBOUT
cues the #COPYC function.

as' 3

I
B-5

The IBM 2741

The IBM terminal resembles an electric typewriter with

a standard keyboard. Both .lows r- and upper-case letters are

available. The special keys and special functions of the

IBM 2741 are as follows:

1. The following characters differ from their mark-
ings on the IBM 2741 keyboard:

SHIFT-1 shown as ± means (not) ;
SHIFT-6 shown as a left bracket means < (less than);
SHIFT -! shown as a right bracket means > (greater than):

shown as ! means `(or).

2. The standard control characters are obtained as
follows:

RETURN causes the carriage to return to the beginning
of the line. RETURN is the conventional method used
to signal PLORTS that the line just typed is to be
interpreted by the computer. Until RETURN is typed,
the information on a line is not examined.

ATTN (printing / when it is struck) causes the
computer to return to the beginning of the line
in the same manner as the RETURN key. However, the
information on the line is ignored by the computer.

BACKSPACE, like the backspace key on a typewriter,
causes the carriage to move one space to the left
each time it is struck. The BACKSPACE key can be
used to backspace past typing errors to overstrike
corrections. The newly typed letters will replace
the letters in error. For example, if the word
TYPO is incorrectly typed as TYOP, backspacing twice
and typing the correction will give TY99. The com-
puter will interpret the word as TYPO.

3. Only three multiplexor functions are available
on the IBM 2741 terminals. First, #UC causes all
alphabetic characters to be interpreted as upper-case.
There is no control key combination associated with
this function since it takes affect as soon as it
is specified. The other two functions, #TAB and #STAB,
are activated by the TAB key. these functions are
explained later in this section.

B-6

Multiplexor Functions

This set of functions assists the user in formatting

typed input lines. There are two instructions associated

with most of the functions. The first gives the specifica-

tion of the function; the second causes its use. During the

specification, the multiplexor is told what function is be-

ing defined and in what way by means of an instruction which

starts with the # character. Functions cannot be used until

they are specified. The use of the functions is cued during

programming, except as noted, by means of a control key or

key compination.

#TAB NI N2 N3 N4 (N2, N3, and N4 are optional and in
ascending order) sets tab stops at columns NI, N2,
N3, and N4. When the CTRL-1 key combination is struck
(the TAB key for IBM 2741 terminals), the carriage
moves up to the next tabulator stop. When a line
number has been created automatically by the #NUM
function, the #TAB columns are counted with column 1

as the second position, after the line number. At all
other times, the counting is done from the first
printable column.

#STAB NI N2 N3 N4 functions the same way as #TAB
except that the spaces are inserted in the line only
as it is seen by the computer and not in the line
printed at the Terminal. A number from 1 to 4 is

typed with the control key combination to indicate
which tab stop has been selected. (#TAB and #STAB
cannot be specified at the same time.)

#NUM NI N2 provides automatic line numbering. NI is

the starting line number and N2 is the numbering
increment. Available only on Teletype terminals,
this function is activated by CTRL-Z.

#COPY provides a feature similar to the duplicate
feature on a keypunch. After it has been specified,
typing CTRL-A will cause the previous line to be
copied from the column where CTRL-A is pressed to
the next tab stop.

B-7

#COPYC allows single characters to be copied from the
previous line. Each time the RUBOUT key is struck,
one character is copied from the same location in the
preceding line. When the RUBOUT and REPEAT keys are
used together, strings of characters can be copied.

The following multiplexor functions do not have control

key combinations associated with them. They become effec-

tive as soon as they are specified.

#UC causes all lower-case alphabetic characters to be
translated to upper-case, Available only on IBM 2741
terminals, this function saves the trouble of holding
the SHIFT key for long strings of upper-case characters.

#LONGLINE prints all the characters of a file line
on one printed line.

#TAPEIN causes the paper tape reader to start.

#TAPEOUT causes any output for paper tape to be
punched.

#TAPEOUTM, the same as #TAPEOUT, causes the paper tape
to be punched in a format suitable for a manual reader.

#D nnn -- where nnn is one of the letter combinations
T,S,N,C,CC,L,B, or U -- deletes the corresponding
multiplexor function. T refers to #TAB or #STAB.
S converts #STAB to #TAB. N refers to #NUM. C refers
to #COPY. CC refers to #COPYC. L refers to #LONGLINE.
B refers to the second bell. Finally, U refers to #UC.

B - 8

File Editing

PLORTS files are referenced in the system by a name of

eight or less characters, not including blanks, commas, or

periods. Names with qualifiers also may be used. The quali-

fiers, each not more than eight letters long, are separated

by periods. The qualifiers of a PLORTS name are the names

of the subfiles contained within the PLORTS file.

A file name may be considered in terms of the implicit

form: PS#.NAME.FILENAME. PS# represents the problem specifi-

cation number, and NAME is the name with which the user

signed on. FILENAME is the name of the PLORTS file re-

ferred to by the user, and may be qualified as stated.

When John Q. Public signs on with 9999,PUBLIC, the names of

all the PLORTS files created by Public are implicitly pre-

fixed with 9999.PUBLIC. In this way, Public's files are

available only to him.

Each line in a PLORTS file constitutes a record stored

by its line number. Line numbers are of the form NNN.NNN,

where N is a decimal digit. Fewer digits may be used in

referring to a line, and the period may be omitted for inte-

ger values less than three digits long. The lines in a

file are stored in increasing numerical order. The longest

line that can be printed by an IBM terminal is about 126

characters long. The longest line that can be entered at

the keyboard is 118 characters long. (Teletype lines are

limited to about 80 characters.) Although lines longer than

these limits cannot be completely displayed, they can be

B-9

filed and used by the batch processing system.

Two different sets of file editing commands are avail-

able, depending on the open or closed mode of the terminal.

The terminal may be in only one of the two modes at any time.

Immediately after signing on, the terminal is in the

closed mode, for which the set of commands is as follows:

CATALOG or CAT lists the names of files stored under
PS#.NAME and the last date each file was opened.
CATALOG may be typed by itself, or it may be followed
by one or two file names. If one name follows CATALOG,
then the names of the stored PLORTS files are listed
alphabetically starting with that name. If two names
follow CATALOG, only the file names between and includ-
ing the two names are listed alphabetically.

RUN filel,file2,file3, causes the PLORTS files
named in the command to be sent to the computer for
execution. The files are sent in the order in which
they are named. The list of names can extend over one
line if each line to be continued ends with a comma
after the last file name on that line. The lines in
the files are passed on as 72-column character strings
(to be handled like punched cards).

OPEN filename opens the file named. If the file named
does not already exist, it is created.

0 filename opens the file named only if it already
exists. If 0 BASICS were typed as an instruction, and
if a PLORTS file named BASICS did not exist, the com-
mand would be invalid. After OPEN or 0 is accepted,
the terminal is in the open mode and the opened file
can be modified by the addition, deletion, or replace-
ment of lines.

LOGOUT disconnects the terminal from the PLORTS sys-
tem. LOGOUT must be typed after each use of the sys-
tem to prevent unauthorized access to files stored
under the PS/I and name used for logging in.

DEST FILE destroys the file named FILE.

TRACK ;ists the storage blocks allocated and the
blocks used.

MSG prints any messages from the computer operator.

8-10

OPENMSG N (where N is a digit from 0 to 9), when fol-
lowed by a LIST command, prints any messages and infor-
mation about changes in the system.

TIME gives the time, the day of the week, and the date.

JOB JOBNAME (where JOBNAME is a complete eight-char-
acter job number) gives the status of the indicated job.
Possible responses are NOT LOADED, IN SYSTEM, or OUT
OF SYSTEM. This command may be used before logging in
as a response to ENTER PS#,USER NAME.

The following commands apply to terminals in the open
mode.

COPY filename copies the file named into the file that
is open.

COPYS filename copies the file named into the open
file, but copies only columns 1-72.

COPYE filenamel.filename2. filename9...copies files
from a different index level into the open file. If
filename] is a four-digit PS#, then filename2 might be
a user's name, and filename9 might be a PLORTS file
name.

DEL NI N2 deletes the lines in a file numbered NI
through N2. If only one line number is given, then
only the line with that number is deleted.

LIST NI N2 lists the lines numbered NI through N2 at
the terminal. If only one line number is given, then
all the lines in a file, starting with the given line,
are listed. If no numbers are given, the entire
contents of the open file are listed.

LISTN NI N2 is the same as LIST, except that the line
numbers are not listed.

LISTO NI N2 is the same as LIST, except that the out-
put is binary information for paper tape.

LAST lists the last line in the open file.

ENTER causes everything entered at the console to be
appended to the end of the open file. The addition of
lines will continue until the command EXITTT is typed.
Only multiplexor functions and the EXITTT command are
recognized by the computer after ENTER is given (no
line numbers can be used).

EXITTT ends the effect of the ENTER command.

a. 1

B-11

CLOSE closes the open file and saves it. This command
returns the terminal to the closed mode.

Individual lines may be entered in an open PLORTS

file by typing a line number followed by a single space

and the desired information. The line number may take any

of the permissible forms described earlier. Valid line

numbers might be 32, 43.016, .3, 4., or 100. The line

numbers 1000 and .0345 would be invalid. When the line is

entered, the line number is expanded automatically to the

six-digit form, and the line is filed in its proper numer-

ical position. If a line with the same number is already

present, it is replaced by the new line. Spaces typed be-

fore the line number are ignored when the line is entered.

However, spaces after the line number are part of the line.

The line number must always be followed b

20

Y at least one blank.

